MATHÉMATIQUES

Le résumé de cours à portée de main

SYNTHÈSE DE COURS

LIVRET DE FORMULES

Elisa Calvo Jean-Marc Fitoussi

progress

SOMMAIRE

1. FONCTION TRINOME DU SECOND DEGRE	5
2. RAPPELS SUR LES FONCTIONS	6
3. FONCTIONS DE REFERENCE	7
4. DERIVATION ET ETUDE DE FONCTIONS	8
5. POURCENTAGES	11
6. GENERALITES SUR LES SUITES NUMERIQUES	13
7. SUITES ARITHMETIQUES ET GEOMETRIQUES	14
8. STATISTIQUE DESCRIPTIVE	15
9. PROBABILITES ET VARIABLES ALEATOIRES	18
10. LOI BINOMIALE	20
11. ECHANTILLONNAGE	21

2. Rappels sur les fonctions

Fonction croissante sur un intervalle I	Pour tout a et b de I : si $a < b$ alors $f(a) \le f(b)$	
Fonction décroissante sur un intervalle I	Pour tout a et b de I : $\operatorname{si} a < b \text{ alors } f(a) \ge f(b)$	
Fonction constante sur un intervalle I	Pour tout a et b de I : $f(a) = f(b)$	
Fonction monotone sur un intervalle I	f est soit croissante, soit décroissante sur I	
Fonction affine	Une fonction affine est une fonction f définie sur \mathbb{R} par : $f(x) = ax + b, \ a \in \mathbb{R}, \ b \in \mathbb{R}$ Sa courbe représentative est une droite • si $a > 0$: f est strictement croissante sur \mathbb{R} • si $a < 0$: f est strictement décroissante sur \mathbb{R} • si $a = 0$: f est constante sur \mathbb{R}	
Fonction carré	C'est la fonction f définie par $f(x) = x^2$ avec $x \in \mathbb{R}$ Sa courbe représentative est une parabole • sur $]-\infty;0]:f$ est strictement décroissante • sur $[0;+\infty[:f]$ est strictement croissante	
Fonction inverse	C'est la fonction f définie par $f(x) = \frac{1}{x}$ avec $x \neq 0$ Sa courbe représentative est une hyperbole • sur $]-\infty;0[:f$ est strictement décroissante • sur $]0;+\infty[:f$ est strictement décroissante	

4. Dérivation et étude de fonctions

f est une fonction définie sur un intervalle I, a un réel de I et ${\cal C}_f$ sa courbe représentative dans un repère

Nombre dérivé d'une fonction en un réel a Interprétation graphique du nombre dérivé en a Équation de la tangente au point d'abscisse a	On dit que f est dérivable en un réel $a \in I$ si la limite du taux d'accroissement $\frac{f(a+h)-f(a)}{h}$ lorsque h tend vers 0 existe et est un nombre réel fini Cette limite est appelée le nombre dérivé de f en a et est noté $f'(a)$ Si f est une fonction dérivable en un réel $a \in I$, alors le nombre dérivé $f'(a)$ est le coefficient directeur de la tangente à C_f au point d'abscisse a $y = f'(a)(x-a) + f(a)$	
Utilisation de la calculatrice (TI) pour calculer le nombre dérivé $f'(a)$	 Entrer l'expression de la fonction f dans f(x) → Y1 = Régler les paramètres de la fenêtre pour inclure le réel a Pour calculer f'(1) (par exemple) : 2nde → trace → 6 : dy/dx → 1 → entrer 	
Tangente horizontale	C_f admet une tangente horizontale aux points d'abscisse a pour lesquels $f'(a) = 0$	
Fonction dérivable sur un intervalle I	La fonction f est dite dérivable sur I si f est dérivable en tout réel a de I	
Fonction dérivée	Si f est dérivable sur I alors pour tout x de I, alors la fonction $f': x \mapsto f'(x)$ est appelée dérivée de la fonction f	
Dérivabilité des fonctions de référence	 Les fonctions affines et polynômes sont dérivables sur ℝ La fonction racine carrée est dérivable sur]0;+∞[La fonction inverse est dérivable sur]-∞;0[et sur]0;+∞[Les fonctions rationnelles sont dérivables sur leur ensemble de définition 	

6. Généralités sur les suites numériques

Définition d'une suite numérique	Une suite numérique est une liste ordonnée finie ou infinie de nombres
Notation	Pour la suite numérique (u_n) , la notation u_n représente le n -ième terme ou le terme d'indice n de la suite
Définition explicite	La suite (u_n) est définie de façon explicite quand, pour tout entier n , le terme u_n est défini en fonction de n Il existe alors une relation de la forme : $u_n = f(n)$ où f est une fonction réelle
Définition par récurrence	La suite (u_n) est définie par récurrence quand on en donne : • le terme initial (le plus souvent u_0 ou u_1) • et une relation qui permet de calculer chaque terme en fonction du terme précédent Il existe alors une relation de la forme : $u_{n+1} = f(u_n)$ où f est une fonction réelle
Utilisation de la calculatrice (TI) pour calculer le terme de rang <i>n</i> d'une suite	 Se placer en mode « Suites » Entrer dans f(x) les données de la suite : nmin : rang du 1^{er} terme u(n-1) en fonction de u(n) ou en fonction de n u(nmin) : valeur du 1^{er} terme Exemple pour calculer u₁₀ : 2nde → 7 → 10 → entrer
Sens de variation d'une suite (u_n)	Soit (u_n) une suite définie sur \mathbb{N} • (u_n) est croissante si $u_{n+1} \ge u_n$ pour tout entier n • (u_n) est décroissante si $u_{n+1} \le u_n$ pour tout entier n • (u_n) est constante si $u_{n+1} = u_n$ pour tout entier n (u_n) est monotone si elle est croissante ou décroissante
Représentation graphique d'une suite	Dans un repère du plan, la représentation graphique d'une suite (u_n) est l'ensemble des points de coordonnées $(n;u_n)$